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Abstract

One of the central problems in the representation theory of compact groups
concerns multiplicity, wherein an irreducible representation occurs more
than once in the decomposition of thefold tensor product of irreducible
representations. The problem is that there are no operators arising from
the group itself whose eigenvalues can be used to label the equivalent
representations occurring in the decomposition.

In this paper we use invariant theory along with so-called generalized
Casimir operators to show how to resolve the multiplicity problem foll{r€)
groups. The starting point is to augment th#old tensor product space with
the contragredient representation of interest and construct a subsgaQeé)of
invariants. The setting for this construction is a polynomial space embedded
in a Fock space of complex variables which carries all the irreducible
representations df(N) (or GLy(C)). The dimension of the invariant subspace
is equal to the multiplicity occurring in the tensor product decomposition.

Generalized Casimir operators are operators from the universal enveloping
algebra of outer produdt(N) groups that commute with the diagorid{N)
action and whose eigenvalues can be used to label the multiplicity. Using
the notion of dual representations we show how to rewrite the generalized
Casimir operators and prove that they act invariantly on the invariant subspace.
A complete set of commuting generalized Casimir operators can therefore be
used to construct eigenvectors that form an orthonormal basis in the invariant
subspace. Different sets of generalized commuting Casimir operators generate
different orthonormal bases in the invariant subspace; the overlaps between the
eigenvectors of different commuting sets of generalized Casimir operators are
called invariant coefficients. We show that Racah coefficients are special cases
of invariant coefficients in which the generalized Casimir operators have been
chosen with respect to a definite coupling scheme in the tensor product.

The paper concludes with an example of the threefold tensor product
of the eight-dimensional irreducible representation{f) in which the
multiplicity of the chosen irreducible representation is 6. Eigenvectors in the
six-dimensional invariant subspace are computed for different sets of
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generalized Casimir operators and invariant coefficients, including Racah
coefficients.

PACS numbers: 02.20a, 02.30-f

1. Introduction

The study of invariants under group actions on some space has long been of interest
from both a mathematical and a physical point of view. Our motivation for studying
invariants is related to computing Clebsch—Gordan coefficients, wherein the tensor product of
irreducible representations of a compact group is decomposed into a direct sum of irreducible
representations. If bases are chosen for the irreducible representation (abbreviated irrep)
spaces, Clebsch—Gordan coefficients are the overlap between the tensor product basis and
direct sum basis. One of the main difficulties in computing such coefficients revolves about
the multiplicity problem, when an irreducible representation occurs more than once in the
direct sum decomposition. The problem is that there are no operators from the group itself
whose eigenvalues can be used to break the multiplicity.

In this paper we will deal with the multiplicity problem féf(V) by studying the subspace
of invariants of the space offold tensor products df/(N) irreps augmented by the contragre-
dient (or dual) representation of the representation of interest. Such a point of view makes use
of the fact that the multiplicity of a representatibof U(N) in the tensor product; ® - - - ® A,
is equal to the number of times the identity (or invariant) representation is contained in the
augmented tensor produgt®- - -® A, ® ¥, wherer is the representation contragredient to
A. The dimension of the invariant subspace is equal to the multiplicity. This suggests a way not
only of computing the multiplicity, but more importantly, of constructing an orthogonal basis
in the invariant subspace that labels the multiplicity. In previous papers we have defined gener-
alized Casimir operators that come from the universal enveloping algebra of the outer product
groupU(N) x --- x U(N) and commute with the action of the diagonal subgroup. There
are of course a large number of different commuting generalized Casimir operators whose
eigenvalues can serve to label the multiplicity; the choice one makes depends on the way in
which multiplicity is to be dealt with. But we will show how to characterize the generalized
Casimir operators and give some examples that show the structure of such operators.

From this point of view Racah (or recoupling) coefficients are of particular interest, for
they are independent of the bases of the irrep spaces and depend only on the basis chosen for the
invariant subspace. Racah coefficients are usually defined by the ordering in which the irreps
in the tensor product are coupled togethek;ifs tensored with.,, which is then tensored to
A3, etc, a set of multiplicity labels results that differs from a different stepwise coupled set.
Whatis in effect being done is use the eigenvalues of the Casimir operators for irreps occurring
in A1 ® A2, (A1 ®A2) ® A3, etc to label the multiplicity. These Casimir operators are examples
of generalized Casimir operators and from our point of view only one of many choices that can
be made. Thus, we are generalizing the notion of Racah coefficients to include basis labels
in the invariant subspace arising from the eigenvalues of any set of commuting generalized
Casimir operators. We will call the overlap coefficients between different multiplicity labels
invariant coefficients and reserve the term Racah coefficient to mean multiplicity labels arising
from different stepwise coupling schemes. kgt be one basis set angs another. Then
invariant coefficients are defined as

(Ana | Ang)
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where|in,) is a (normalized) basis element in the invariant subspace of the tensor product
spaceVM @ - ® Vi @ VY,

In this paper we restrict our attention to th&N) groups, because, as will be shown,
they have a particularly simple invariant structure, which makes it possible to characterize the
invariant subspace in a simple fashion. The setting for analysing the invariant subspaces is a
Bargmann space of square integrable holomorphic entire functions. All basis elements will
be realized as polynomial functions in such spaces; in particular, basis stdié8¥)ofreps
will be realized as polynomial functions, as will tensor products. In section 2 we introduce the
relevant Bargmann spaces and collect the various theorems needed to characterize invariant
subspaces. Having defined the invariant subspaces, in section 3 we proceed to analyse the
structure of these spaces and show how to construct bases from eigenvectors of generalized
Casimir operators. If the generalized Casimir operators are chosen to give a Gelfand—Cetlin
tableau, we show how to construct the corresponding Gelfand—Cetlin basis element.

To conclude, in section 4 we present several examples of bases for the invariant spaces
and calculate some illustrative invariant coefficients. In particular, we show how to obtain
bases that are labelled by representations of the symmetric groupttars, in the case when
the tensor product is over the same representation.

The analysis of tensor product decompositions of compact groups, especialfyNhe
groups, has a long history and a number of different methods have been employed to deal with
the multiplicity problem. In [1] we have shown how to deal with the multiplicity problem
for the SU(N) groups, but the invariant theory is considerably more complicated, involving
minors of determinants, and thus is not as computationally effective as the methods discussed
here which generalize the ones considered in [2].

2. U(N) representation theory

Let "™V denote the vector space of allx N complex matrices. 1fZ = (Z;j) is an
element ofC"*V | let Z* denote its complex conjugate and writg; = X;; + J=1 Yij;
1<i<nl<j<N. IfdX;;(resp dY;;) denotes Lebesgue measurelonwe let dZ
denote the Lebesgue product measur&8H'. Define a Gaussian measure dn C**Y by

du(Z2) = n "N exp[-Tr(zZz"]dz (2.1)

where Tr denotes the trace of a matrix afidis the transpose ¢f*.
A function f : C"*N — C is holomorphic square integrable if it is holomorphic on the
entire domairC"*", and if

[C @R du@) <. (2.2)

Clearly, the holomorphic square-integrable functions form a Hilbert space}dtyenann—
Segal-Fock space, with respect to the inner product

(1l f2) = /C AD f2) du@). (2:3)

Let F = F(C™N) denote this Hilbert space. From [2] this inner product also can be defined
by the following formula:

(1l f2) = f{ (D) f2(Z)| z=0. (2.4)
Thus, if f € F(CN) then £(Z) = Yoy —0 C) 2, Where(@) = (11, ... ann), is an
n x N-tuple of integers>0, |(&)| = a11+ -+ aun, Co) € CandzZ® = z3*- .. Z2N.
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Moreover, C, must satisfyz‘l’(‘;)‘zo(a)!|c(a)|2 < oo, where (a)! = a11!...a,n!. For
f e F(C™N) definef* by

ff2Z)y= )Y Cwz®. (2.5)

[(«)|=0

Thenf*(D) is the differential operator obtained by formally replacidg; by the partial
derivatived/dz,; (1 <y <n,1< j < N). If f € F(CV)then obviously f*)* = f and
f* e F(©™N). Moreover, for allf1, fo € F(C™N)

(. 1) = AV (Dlz=0 = Y. @ICL\Chpy = (F1. f2) = (2. f). (2.6)

[(«)=0

Therefore|| f*|| = || f] forall £ € F(C™N). If P(C"*V) denotes the subspaceBfC"*V)
of all polynomial functions irZ, thenP(C**") is dense inF (C"*V). It follows from Weyl's
‘unitarian trick’ that the representatighof U(N) on F defined by

(R(®))NZ) = f(Zg) g € U(N) (2.7)

is unitary.
Irreducible representations 6f(N) are realized on subspaces®flefined by

von =l e 7@, f62) =2 0) f(2)] (2.8)
whereb € By, the subgroup o6 L y (C) of lower triangular matrices, and™) () € C is a
representation a8 defined by

M) == d™ ... g (2.9)
where(d1 o ) is an element of the diagonal subgroupmtnd M1, ..., M, satisfy the

dominant cbnaitioan >...>M,, n<N.
The r-fold tensor products of irreps df(N) are also subspaces of an appropriate
define

N — ) g gy ) (2.10)
the subspace of (C”*V), as
HO =1 e FE M) | fB2) =" (B [(2) = " (B -7 f ()] (211)
wherep = 3"/, p; andp is an element of the product Borel group,
b1 0
B = (2.12)
0 by,

with b; € B),, the p; x p; lower triangular matrix. It follows that the outer product group
U(N) x --- x U(N), consisting of elemenigz, . .., g,), gi € U(N), is irreducible or™,

with irrep
Z1 Z181
(Rgren £ | 1 =1 ¢ feHm™. (2.13)
Zy Zrgr

(m):= (m11...m1p,, mo1...M2p,, ..., Mmsp,), thatis, all the zeros im(;) have been deleted.
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Ifthe elements o/ (N) x- - -x U (N) are restricted to the diagonal subgroup of all elements
(8,8, ---,8), & € UN), whichis identified withU(N), the representatioR, . ... ¢) Of U(N)
onH"™ becomes reducible and decomposes into a direct sum of irreducible representations
of U(N), with multiplicity w(M):

Hm — Z @,LL(M)V(M). (2.14)
I

Rather than decomposirg™ directly the strategy in this paper is to adjoin the contragredient
representation of (), denoted by(M)¥ to H" and find the invariant subspace of
H™ @ VDY thatis, the space of identity representation&/¥). This is possible since the

multiplicity (M) is equal to the dimension of tHé(N)-invariant subspace 6{™ g v Y

(see [1]). The appendix shows that the contragredient representation—defined with respect
to linear functionals of the representation sp&¢&’—can be written in the following way;
consider the irrep space defined in equation (2.3) and set

RY@NZ) =f(zgY)  feV® geGLy©) gY =" (2.15)
ThenRY (g) is equivalent to the contragredient representation.
Now let GL(N, C) x --- x GL(N, C) xGL(N, C) act onH™ @ V" yia the outer

r
tensor product. If the signaturgff is (M1, ..., M,,0,...,0), set

N

VA
n=p+gq Z=| : |ecr¥N

z,

andW e C?*V | then the inner (or Kronecker) tensor product representati@hiof (C) on
H™ @ VY can be defined as

[R(m) ® V(M)‘/(g)f] <[§/D _f <[WZ;\/D (2.16)

forall f € H™ @ VMY < 7Ny andg € GLy(C). Then the restriction oR ™M)
to U(N) is unitary.
In general G Ly (C) acts onP(C™*N) ¢ F(C"™N) via the representation

[R(g) /] ([VZV]) =/ ([Wzg%D v ePEY). (2.17)

Then it follows from [3] that the ring of all polynomials |[1VZV] which are invariant under

this action, is generated by the constants andpih@lgebraically independent polynomials
P, defined by

N

V4

P““([WD =(ZWT)aa:;ZaiWa,» 1<a<p 1<a<gq. (2.18)
1=

SetX, o = aa([é]) and letX denote the x g matrix with entriesX,,. If 7 denotes the

ring of all G L y (C)-invariants, it follows that an element ¢f is a polynomial in the variable
X,i.e., f e Jifandonly if

f([VZVD=<pf(X) X=zwl
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for some polynomialp s € P(CP*?). Note that by constructiop < min(p, N), and by
abuse of language (M) = (M1, ..., My, 0,...,0) let (M), (or simply (M) if there is no

p
possible confusion) denote the signature of the equivalent class of irreducible representations
of GL,(C) with highest weightM1, ..., M,, 0, ..., 0). Let W?)» denote the vector space

P
of all polynomial functionp in X which also satisfy the covariant condition

o(XbT) = 7™M (h)p(X) Vb € By. (2.19)
Define the representatidii)» of GL ,(C) onP(CP*%) by the equation
L™Mr()e(X) = p(y" X) Y € GLy(C). (2.20)

Then the Borel-Weil theorem together with Weyl's ‘unitarian trick’ imply that the
representatior,. ™» s irreducible with signatureM), and its restriction toU(p) is an
irreducible unitary representation of the same signature.

Theorem 2.1. [f 7(M®WM Y denotes the subspace of all GLy(C) invariant polynomials in
H(’”)@(MW then every element f in J(m)‘g’(M)‘/ can be uniquely identified with an element ¢y
in WM»r swhich also satisfies the covariant condition:

L (pTygy = 7" (B)oy
where B and 7™ (B) are defined by equations (2.11) and (2.12). In other words the Or’s
constitute the subspace (WMv; 71y of Wp of ail highest weight vectors of the restriction

L(M)plGLpl(C) X oo X GLpr((C)‘

Proof. Let f e J®M)Y then there corresponds uniquely a functigne P(CP*?) such

that
Z
r([n])=e0 x=zwn

The condition

(8 S ]) = (7))

for b € B, implies that

0r(X0T) = p(ZWTbT) = p(ZW)T) = f ([zij

=7 b) f ([VZVD =7 (b)gp(X)

which means thap, € W*)». The condition
B 1 0
z Z
G2 8o (3)
q o | 1, w w

st -sion=1(5 22
Befr(X) =9r(BX) = f o 1, ||lw

=ap)f ([vaD =M (B (X). (2.21)

implies that
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Thus, if we regardv™)» as aG L, (C) x - - - x GL ,, (C)-module the condition (2.21) implies
thatey is a highest weight vector df») |G, ()x...xGL,, (©)- .

Corollary 2.2. Let G = U(N) and let (R(M ) yM )) denote the irreducible unitary G-module
with signature (M) = (M1, ..., My, 0, ...,0). Then the multiplicity ofR(M) in H™ js equal

N
to the dimension of the subspace (W™M)v; ™) defined in theorem 2.1

Proof. From theorem 2.1 of [1] this multiplicity is equal to the dimensionf®*)" and
this vector space is isomorphic & *)r; 7 ™) by theorem 2.1, and the corollary follows
immediately from this. 0

Remark 2.3. The condition (2.21) can be broken into two parts: Afis unipotent
dy
then LM»(BTYp, = ¢r, and if B is a diagonal matrix( ) then LMr(d)p; =
dp

di'tP ... dy"" ¢y . This means thap are weight vectors o(foM)P). Now the Gelfand—

Cetlin tableaux provide a set of labels that can be used to get the dimension of the subspace of

(WMr) with a definite weight. It follows that a bound on the dimensioWf")»; ™) is

given by the number of Gelfand—Cetlin tableaux associated with irreducible representations

of GL,(C) of signature(M), and with weight(m). A special case occurs whet™ is

an r-fold tensor product of symmerric’ representations. (A representation Gy (C) is

calledsymmetric if its signature is of the forn@m, O, .. ., 0), so-called because it is the space
——————

N
of symmetric tensors that occurs in thefold tensor product of the vector representation
(1,0,...,0) in the Schur-Weyl duality theorem, see [3, theorem 4AD]. In this special case
—————

N
r = p and the elementg are reduced to the diagonal elemeiitd hus we have also proven
the following:

Corollary 2.4. If H™ is a p-fold tensor product of symmetric representations of G Ly (C)

then J(mM®WM Y admits an orthogonal basis { f¢} where fg corresponds to a Gelfand—Cetlin
basis element gz of P(CP*?), and & ranges over all Gelfand—Cetlin tableaux of (M), with
weight (m), i.e.,

(£

To explicitly construct a basis of ™2 we construct a basis ¢ Mr; M) For this
let {Ly, } denote the basis of the infinitesimal operators of the left representatiG pfC)
on F(CP*4) given byL(h)¢(X) = ¢(hT X). Then

Loy =) Xoi 7— 1<a.y<p (2.22)

and theL,, generate a Lie algebra isomorphicdg, (C). Moreover,LLy = L,, and the
Lyy With o < y areraising operators while the Ly, with « > y arelowering operators.

If ¢ is a weight vector of W*)r) of weight (m) then
Ld)p(X) = p(dX) =d's ...dslo(X)  Vd € D,.
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It follows that

d
(Laa®)(X) = 4 (L(€XPleas)9)(X)]i=0

1
|
d |
~a’ - — = ex‘pt X
|
} 1 1=0
d
= E(e’"“’w(x))lz:o = mgp(X). (2.23)
Using the fact that
[Luv, Lagl = 8valyp — 8upLav 1<, B u,v<p (2.24)
we have forx # B
Loo(Lap®) = [Loa, Laple + Lag(Laa®) = Lagp + maLagp = (1 +mg) Lage (2.25)

that is,Lqg raises the power af,, by one, and

Lpp(Lapp) = [Lgp, Lagle + Lap(Lgpp) = —Lapp + mgLagp = (=1 +mp)Lepp  (2.26)
that is,Lqg lowers the power ofl,g by one. It follows immediately that

Ld)(Lapp) = dift ... dos™ . df g (2.27)
thatis,Lg¢ is also aweight vector of weiglitny, ..., mq+1,...,mg—1, ..., m,)ifa < B
and(my,...,mg—1,...,mg+1 ...,mp) if « > B. And in our ordering of the weights

this justifies the claim thaL.g is a lowering operator i&e > g and is a raising operator if
a < B. Amongst these infinitesimal operators we have the particular opetatpss, where
p = pi1,..., pr, Which correspond to the infinitesimal operators of &&,, (C) subgroup
actions, 1< i < r. Thus, the conditior.™»(8T)p = ¢, ¢ € V™r g unipotent, is
equivalent to the condition

La,g,p =0  Nap <Bp p=p1,....pr (2.27)

By exploiting the weight changing properties of thgg we construct a set of operatdss, },
wherev ranges from 1 to the number of Gelfand—Cetlin tableaux associated(¥ith of
weight(m). Each operato®, is a product of lowering operatorfs,g, « < 8. By applying

&, to the highest weight vectginey’ in WMr where

e M(X) = A(xX)MM2 A, xMa (2.28)
and theA are principal minors, we man%i into

P(CP*a)m — [p € CPX4 : p(dX) = 7™ (d) p(X), Vd € Dp} . (2.29)

The systematic procedure for doing this, which can be implemented on a computer, makes use
of the Gelfand—Cetlin tableaus for irre@¥) , and weighi(im) of U (p) (see [4, 5] for details).

We thus have constructed a linearly independent subspaé@f*?). In order that
elements of this subspace belong(W™); = ™) it must also satisfy the condition (2.27).

This gives a set of basis elements(&); 7(™) as well as the multiplicity«(M). And
this also gives us a basis faf™®™Y | The problem of constructing orthogonal basis for
JmeMY is considered in section 3.
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3. Orthogonal bases in 7 ™®@™)¥

In the previous section, we have shown that the space of invaﬁ’éﬁi@(MW corresponds to
the subspaceW™)r; ™) of the irreduciblel/ (p)-modulew *)». We also showed how to

construct a (nonorthogonal) basis(@%*»; 7 ™), and hence off MEMY | by exploiting
properties of the Gelfand—Cetlin tableaux associated with the wéight The goal of this
section is to generate orthogonal bases (#t*)»; (™), or equivalently forg (me™nY

by introducing generalized Casimir operators whose eigenvalues can be used as labels of
orthogonal basis vectors.

First, let us make the following observation. According to our theory of dual
representations (see [6, 7]), the spectral decompositions of the (@), U(g)) on
F(CP*9) and(U(p), U(N)) on F(CP*N) are identical ifp > N; for p < N there is a one-
to-one correspondence between the isotypic components with sigr@fare. ., M) in
F(CP*P) and those with signatur@s, ..., M,,0,...,0) in F(CP*N). This observation

N
applied to the pairsU (p), U(q)) acting onF(CP*?), (U(p), U(N)) acting onF(CP*N)
(recall thaty < min(p, N)) implies that there is a correspondence between the dual modules
WM @ vy WMy & v Mg andwMr @ vMN which are the isotypic components
with signature(M) in the corresponding Bargmann—Segal-Fock spaces. In particular, the
highest weight vectors of the irreducible dual modules are identical if expressed in terms of
the same dummy variable. It follows that the effect of the operal:grsn Omaxs whered,
are expressed in terms of the infinitesimal operators

q __ , —
Laﬂ - Z ZOtl azﬂi or (xﬂ - Z ZOtl azﬂz

is identical (in fact, the global actioh(h),h € U(p)y, is always the same) aA (CP*9),
F(CP*Py or F(CP*N). But the operator@.,, if expressed in terms of thla(’x\’ﬂ, are exactly

the linearly independent intertwining operators that maplt#’) irreducible moduleg/)
into the tensor produdy ™ (C"*V). This is exactly the problem we considered in [2].

The procedure by which generalized Casimir operators are used to break the multiplicity
is quite general. LetG’, G) and(H’, H) be two pairs of dual (representation) modules acting
onF(C™N) in such a way that is a closed subgroup & andH’ is a closed subgroup @'

Let W, «n denote the Weyl algebra of all differential operators with polynomial coefficients
onC™N, LetUg, Uy, Uy andUy denote the universal algebras (of the representations)
of G, G’, H and H’, respectively. Then all these algebras are subalgebrag,qfy. If
ZUG; WaxnN)y ZUG s Waxn), ZUH; Waxn) and ZUy; Wyxn) denote the centralizers

of Ug, Ug', Uy andUy in Wy« n then for many dual representatioBgli;; W,xn) = Ug',
ZUGs Waxn) = UG, ZUH; Waxn) = Ugr andZUpr ;s Waxn) = U,

Definition 3.1. Let py be a unitary representation of a Lie group H on a Hilbert space
H, let G be a closed subgroup of H. Let Uy (resp. Ug) denote the universal enveloping
algebra generated by the infinitesimal action of py (resp. pG = pH|G)- An element C € Uy
that commutes with Ug is called a generalized Casimir operator for the pair (py, pg) (or
simply (H, G)).

Such operators are useful not only for compact groups but also for more general classes
of groups, including semidirect product groups such as the P@noa6Galilei groups, where
itis known how to construct sets of generalized commuting operators whose eigenvalues label
the invariant subspaces.
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Theorem 3.2. Under the assumption that (H', H) and (G’, G) are two dual (representations)
modules acting on F(CN) such that G is a closed subgroup of H and H' is a closed subgroup
of G', if Cy (G) (resp. Cg'(H")) denotes the set of generalized Casimir operators for (H, G)
(resp. (G', H")) then Cy (G) = Cq'(H').

Proof. LetC € Cy(G) then since&€ commutes withl/g it belongs toZ (Ug; Waxn) = Ug:.
On the other hand] € Uy = ZUy; Waxn) must commute witli(y. ThusC € Cg (H'),
and henc€y (G) C Cq/(H'). Similarly, we have the inclusiofi; (H') C Cy(G), and thus
Cu(G) =Cq/(H'). O

Now if A; denotes an equivalence class of the irreducible representation of the@@owup
the spacé’*, 1 <i < n,thenVM1 ® ... ® V* is anirreducibles x --- x G = H-module.
e e’

n
On the restriction to the diagonal subgroup which is identified @itthe Kronecker tensor
productG-moduleV*t @ --- ® V** becomes reducible and in general multiplicity occurs.
Generalized Casimir operators may then be used to break this multiplicity.
In the context of our problem lé€f (N) x --- x U(N), or equivalentlyGL y (C) x --- x

n

GLN(C) = H act onH™. LetG = GLy(C) andUy (resp Ug) denote the universal
enveloping algebra of the infinitesimal action, thgp = U(Gx - - - xG) = UG ®- - - R U(G),
whereg is the Lie algebra generated by the infinitesimal act|0rG<Iin H™ . The set of
generalized Casimir operatatg (G) is generated by the differential operators of the form

Tr [[R(m)]dl . [R(W]d’} (3.1)

where the matriceB(/’f) 1 <i <r, have(j, k) entry:

0 .
]k—zza]m g],ng (32)

The d; are integers=0 (see [2, property 3.3]), and ‘Tr’ denotes thencommutative trace
operator. Moreover, as shown in [2, property 3.5], these generalized Casimir operators are
Hermitian.

To see how these generalized Casimir operators acUB’i‘?@(M)J, and also for
computational purposes, it is more convenient to use the dual representation and theorem 3.2
to comput&’y (G) = Ci; (H') in terms of the dual actions & andG on F(CP*N), The dual
action ofH on F(CP*V) is defined by

I’ @) g

P g

L , fx)=f . X (3.3)
O g gl
forall g/ € GL),(C),1 < i < r, and for all f € F(CP*N). The dual action ofG on
F(CP*NY p = p1+---+p,,is given by
[L(g)f1(X) = f((ghTX) g € GL,(C) (3.4)

and thusH’ = GL,,(C) x --- x GL,(C). The Lie algebra of the infinitesimal action 6f
is generated by the vector fields

N
d
Lap=) Zaig— 1< f<p
i=1

Bi
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and the universal enveloping algelirg s is particularly simple. If we write the matrix
[L] = (Lap), 1 < o, B < p, in block form as
[L]in ... [Lly
[L]=] (3.5)
[L]r1 .. [Ller
then, as was shown in [2, theorem 3.8}/ (H’) is generated by the generalized Casimir
operators of the form
Tr([LYuqus[L)usuz - - - [L)ugur) I<u; <r 1< j<k (3.6)

The Hermitian operators formed from these generalized Casimir operators were used in [2]
to break the multiplicity in the tensor product decompositior6f”. But as remarked

earlier in this section, in the construction of a nonorthogonal Hagig")»; = ™), this basis

is obtained by applying the mas, to wrﬁ]@ and then requiring that they satisfy condition

(2.27). Further, as remarked earliey can be expressed equivalently in termi@E or Lévﬁ.
And the condition (2.27) can be expressed as

La,p,9 =0  Nap <Pp p=pi....pr (3.7)
where

d
La,p, = Z Zayi 0Zg,i
— »

instead ofy Y _, Z,,; /0Zg,i. But these are part of the infinitesimal operators of the action
of H'. It follows that if ¢, are obtained fromb,, by applying condition (2.27), then for

C € Cg/(H") = Cy(G), C commutes with®,,. Indeed,®, mapsV™ into P, andC
commuting withH’ implies thatC commutes with®,,. We summarize the above results in
the following:

Proposition 3.3. The generalized Casimir operators given by equation (3.6) leaves the
subspace (W(M)l’; n(’”)), or equivalently, ‘7(’”)®(M)J, invariant.

Assume now that a set of generalized commuting Hermitian opergdjshas been
chosen such that

th)uwr(nﬂg = q’ucf(/)nﬂ;[ax (3.8)

that is, eaclC; leaves the spaceW™’; 7 ™) invariant. Since(C;} is a commuting set of
Hermitian operators 0|(1W(M); n(’”)) they can be simultaneously diagonalized; calling the
eigenvalueg, then the sefn} may be used to label an orthogonal basiéWfM); n(’")), and
hence of7(™®M)Y Examples will be given in section 4.

4. U(3) examples

To illustrate the methods developed in previous sections, we give below two examples. They
are kept relatively simple but nevertheless typical of the general process of obtaining the
space of invariantsW™; ™) (or equivalently.7 meMYy the Gelfand—Cetlin basis for

a given weight(m) of an irreducible unitary representation@f N) with signature(M), the
multiplicty w(M) of (M) in the tensor productx), the generalized Casimir operators, the
Clebsch—Gordan and the invariant coefficients involved. For details of this process which
includes many computer programs see [4, 5].
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Example 1. Symmetric. For our first example we consider the special case whéfé is an
r-fold tensor product ofymmetric representations (see corollary 2.4).

Let N = 3 and let(my) = (2,0,0), (m2) = (2,0,0) and (m3) = (3,0, 0) denote
the signatures of three symmetric irreducible unitary representatiobi$3)f Then(m) =
(2,2,3) andr = p = 3. ChoosgM) = (4,2,1) theng = 3 and(M)Y = (-1, -2, —4).
The Gelfand—Cetlin tableaux associated with the signatdjead weight 2) are

4 2 1 =2
k1 ko where ki+ky—£=2
¢ — (k1 +ko) =
and4> k1 > 2> ky > 1, k1 > £ > ko. Obviously, the only two solutions are
4 2 1 4 2 1
2 2 and 3 1 . (4.1)
2 2

Thus the multiplicity. (M) is 2, and thereforgy ™ @ (M)~/ (or equwalently(W(M) n(’”)))
has dimension 2. The two left intertwining operators @he= Ly1L3rL31 anddy = L31
The result of applying these operators to the highest weight vector

2
el = (a10)” a0 afix)

fi= 2<A (X)) AB(X)ATEX) — 4ALX)AS(X)AT(X)ATE(X)
fo=202X)A3(0) AB(X)ATS3(X) + 2A1(X) AS(X) AB(X) ATE3(X).
The signatures in the coupling chain corresponding to the subgroups that produce the final
signature (4, 2, 1) are from equation (4.1)
(2,2) > (4,2,1)
(3,1) — (4,2,1).

To identify these signatures 0f(2) in the intermediate coupling it suffices to use the quadratic
Casimir operator

2
Lix Li2 )
Cip=Tr .
12 <[ L2 Lzz}
C12 leaves the subspace spannedfyand f, invariant. SinceCi, is Hermitian its action

on this two-dimensional subspace results in two orthogonal eigenvectors which correspond to
the eigenvalues 8 and 12, respectively,

fi=f1+f2 and fi=fa (4.2)
By normalizing f1 and f> we obtain the two Gelfand—Cetlin basis elements which correspond
4 2 T 4 2 T
to the tableau{ 2 2 )and( 3 1 ) By substitutingZ W7 for X in equation (4.2) we
2 2
also obtain an orthogonal basis {gf" @) |

Note that, in general, unless one is interested in fingii©™"Y explicitly, in the
process of finding Gelfand—Cetlin bases, the dummy variggkays no role, and thus it can
be dropped altogether in all computer programs.
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Example 2. U(3), nonsymmetric. ~Consider the 3-fold tensor produ@, 1, 0) ® (2, 1, 0)
®(2,1,0. Then(m) = (2,1,2,1,2,1) andp = 6. We want to find the equivalent
copies of the irreducible representation with signat(®e3, 1). Then (M) = (5,3, 1),
(M)V = (-1, =3, —=5) andg = N = 3. What is particularly interesting about this example
is that multiplicity already appears in any of the intermediate coupli2gs, 0) ® (2, 1, 0).
This phenomenon of multiplicity occurring in intermediate couplings never appears in the
symmetric case. The task is to find a set of commuting generalized Casimir operators that will
break the multiplicities. Unlike the symmetric case, there are no prescriptions in general for
finding a set of commuting generalized Casimir operators that will break multiplicities for all
cases.

In this example, there are 36 intertwining operators that map the highest weight vector in
V3D into p2121.2D gince there are six solutions to the Borel condition, the multiplicity
is 6. Denote these six polynomials #s . . ., fs.

If

C1 = Tr([L]12[L]22[L]21)
C2 = Tr([L]a3[L]33[L]31) + Tr([L]23[L]33[L]32)

where the 6x 6 matrix [L] is partitioned into 2x 2 blocks, thenC1 andC2 are commuting
generalized Casimir operators. The matrices representing their actions in the subspace
Wo = (WM 7(m) spanned by, ... ., fs are, respectively,

29 7 -8 3 0
-25 43 ¥ -1 .3 o0
_141 123 117 _51 _63
A1 = 2 2 2 2 2
—144 63 39 3 -24 0
_99 9 38 .3 21
2 2 2 2 2
237 69 -—57 39 9 4
50 -23 2 3 3 -4
43 16 2
2 72 52 12 36 -2
A2: 2
126 9 -35 78 27 4
18 -45 -9 9 84 0

—225 -126 50 -24 -6

DiagonalizingA; in the subspace results in four one-dimensional and one two-dimensional
eigenspaces’, breaks the degeneracy and the eigenvalues of the simultaneous eigenvectors
of C1 andC; are

(C1. C2) = [ (313+5), 75)  (30,66), (36, 57), (42, 3105+ /105 |.

al
o

Since the signature@, 1, 0) in the 3-fold tensor product are identical, we can use the
embedded left action of the symmetric grop, to break the multiplicity in the intermediate
couplings. The signatures in th€l, 2), 3) coupling that contribute to the final signature
(5,3,1) are(3,2,1), (3,3,0) and (4, 2,0). Using the usual quadratic and cubic Casimir
operators of5 L (4, C), we find the polynomials that transform according to these signatures:

3,2,1,0
m=—%ﬁ—§ﬁ—%ﬁ—%ﬁ+ﬁ

=it am 2t R 3t g fat [
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(3,3,0,0)

h3=gfi+3 fa+5f3+2fa+2fs—5fs
(4,1,1,0)

_ 1 1 1

ha=35fi—15/2t5 f3+ fe
4,2,0,0)

hs = fe

he=—3fi+sfo—3fa+/a

Note that we have two two-dimensional degenerate subspaces. The signature (3, 2, 1) occurs
with multiplicity 2 in (2, 1, 0) ® (2, 1, 0) and the left action of> which permutes the 2 3

Z1
blocksZ1 andZ, in f | z, | can be used to break the multiplicity. In particular, the +1 and
Z3
—1 eigenvectors are
hi123),+ = — % hi+ho
hi123),-) = —8h1+h

The signature (4, 2, 0) occurs with multiplicity 1(®, 1, 0)®(2, 1, 0). The reason thatwe have
two vectors that transform as (4, 2, 0) is that in the final couplh@, 0) ® (2, 1, 0), (5, 3, 1)
occurs twice. The generalized Casimir operaft,from above commutes with the quadratic
and cubic Casimir operators and breaks the degeneracy with eigen%&hﬁ&t V/105).

As an example of computing Racah coefficients, apply the above procedures to the
(4, (2, 3)) coupling. The unnormalized polynomials associated with the basis vectors
(1, (2, 3)), &) that transform as (3, 2, 1) are

My =—sA—gfo—sfa—2fa— 1 fot fo
ha@a-)=—8sA—afo—5f—§fa—gf5+ fe
Then the Racah coefficients are
hiean+  ha@s).-)

1
hi(1.2).,3),4) 5 f
hi(1.2).3).-) 0 3
It is also possible to bring in the full; group action to break the multiplicitysz acts by
Z1
permuting the three 2 3 bIock{ zz}. If o is the matrix form of an element i§s embedded
Z3

in GL(6, C), then the action is defined as

of[Z)-rt[2)

Computing the characters for the permutations (1, 2) (3) and (1, 3, 2) which represent the
two conjugacy classes shows that the subspgceontains the symmetric and antisymmetric
representations &f3 and two copies of a two-dimensional irreducible representatiéy.cfo
distinguish between these two copies, we use the following self-adjoint generalized Casimir
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operator which commutes witfy (see [8] for these generalized Casimir operators):

T=> Tr(Llowo@[Llo@o3[Llo@0@) -
oeS3
The symmetric and antisymmetric representations are given by
hs = —4f1— f2—18f3 —6fa — 9f5 + 12fe
ha = —20f1 — 17f» — 114f3 — 60f4 — 51f5 + 168fs.

The eigenvectors df that label the two two-dimensional irreducible representatiorss afe
A1 = 2(263— +/457) and), = 2(263 ++/457).

Let

hiv =5 f+L 3+ fs—%5 fo
hlﬁ—z_%fl_%f —%af3+2f4—171f5+f6
hos = =3 fi+§ fa+ [5 fa+ fa+2fs
ho-=—§h—1502=f5fa— fa* 5[5+ s
fi+ = 593 (109— V456)h1 + + i +
fi— = 525 (109— V456)h1 1 +ho
fo+ = %1(109+~/4_56)h1,++h2,+
fo— = 555 (109 +v/456)h,_ + ha, .

Then

Tfix=Aifix
012@ - fit =% fix
0123 fir = =3 fir ¥ fi-
0123 fim =3 fir — 3 fi—.
Hence({ f1.+} and{ f2,+} span the two two-dimensional irreducible representatiorss ahd
each basis vector is uniquely labelled by the eigenvalués ahdT.
In table 1 we list the invariant coefficients of two different schemes of multiplicity

breaking; namely, the scheme using the generalized Casimir opefatorS,) versus the
scheme using the chain of grougisC S3 together with the generalized Casimir operator

Table 1.
82,83, T
(C1,C2) {hs} {ha} {f1+} {f1—} {f2+} {f2—}
{ %(13 -5, 75} —0.6577840 0.0746542 0.004 845370.4293960 —0.410875 0.61384240
{%(13 +/5), 75} 0.3118570 0.2457010-0.34548100 0.0244645 0.830279 0.16774200
{30, 66} 0.0360342 0.3538480-0.43061500 —0.2392890 0.793845 0.146 34500
(36,57} —0.2529720 —0.3101540 0.39007700 0.15460000.805737 0.21847800

{42, %(105— \/105)} —0.3005870 —0.2766197 0.36666500 0.06718610.801773 0.10152100
{42, %(105 +«/105)} —0.1890600 —0.3169780 0.40549800 0.15124100.818345 —0.008 916 07
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5. Conclusion

The results that have been obtained in this paper for resolving (V@ multiplicity problem

with eigenvalues of generalized Casimir operators are actually part of a much more general
set-up. Let(wr, V) be an irreducible module for a group and consider the restriction to

a subgroupG of H. Thens | G is in general reducible and may involve multiplicity. From

the universal enveloping algebra 8f U/ (H), form the generalized Casimir operators, those
operators that commute witi. A commuting set of these operators can be chosen to be
Hermitian and their eigenvalues are used to label the multiplicity. Moreover, the intertwining
operators that map an irreduciliemodule intoV also intertwine the generalized Casimir
operators.

Invariant theory comes into play when the representation contragredient@ertialule
is tensored with théf module. The invariant subspace of this augmented space—that is, the
subspace of elements invariant underhaction—has dimension equal to the multiplicity.

If G andH have dualsG’ and H’, respectively, then the generalized Casimir operators
can be written in terms of the dual actions; that is, the set of generalized Casimir operators is
equivalently defined as the elements of the universal enveloping algebratludit commute
with H’. Stated in this way the generalized Casimir operators act naturally on the invariant
subspace, and in fact leave it invariant. Therefore, the eigenvectors of a complete commuting
set will form an orthonormal basis in the invariant subspace. Different choices of complete
commuting sets will result in different sets of orthonormal bases and their overlap we have
called invariant coefficients.

The main goal of this paper has been to apply this set-up t&/{td groups and show
how it is linked to the decomposition affold tensor products. TheH is the outer product
groupU (N) x - -- x U(N) andG is the restriction to the diagonal subgroiiigv). Irreducible
representations d@¥ are realized as polynomials on Fock space as ig#fvdd tensor product
space. The-foldtensor product of/ (N) irrreps s irreducible undef, but becomes reducible
under the restriction t6;. The eigenvalues of generalized Casimir operators, operators from
the universal enveloping algebraffthat commute withG, then break the multiplicity.

To gain greater insight into the multiplicity structure and to make the multiplicity-breaking
procedure more computationally effective, théold tensor product space is augmented by the
representation contragredient to HgV) representation of interest. Though the contragredient
is defined via linear functionals, we show (in the appendix) that/{éf) there is an equivalent
definition given in terms of the so-called ‘check’ representation, defined in equation (2.15),
which is again a polynomial representation in the Fock space. Thusftid tensor product
space tensored with the contragredient representation is a subspace of a polynomial space
denoted byH™®(M)” (see equation (2.14)); the invariant subspad&- " is then the
subspace oF(™ @ V™) of vectors that are invariant under thién) action.

Both G andH have duals on the Fock space. (s the set of integers specifying irreps in
then-fold tensor product (with all the zeros deleted), tii&nis the groupl (p) (or GL ,(C)),
wherep is the number of entries im{) andH’ is U (p1) x --- x U(pr), > j_1 Pk = p. The
generalized Casimir operators, originally defined with respeét smd G, are shown to be
equivalently defined as elements in the universal enveloping algelgratbft commute with
H' (see theorem 3.1). Proposition 3.3 then shows that the so-defined generalized Casimir
operators leave the spagé™- ™" invariant.

By choosing a complete commuting set of Hermitian generalized Casimir operators, an
orthonormal basis of eigenvectors if™- " can be constructed, and different choices of
complete commuting sets will give different orthonormal bases, the overlaps of which are
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the invariant coefficients. If the generalized Casimir operators are chosen as those Casimir
operators arising from a choice of coupling #hold tensor products in a definite sequence,
this set is then complete and commuting. If another coupling sequence is chosen, another set

of orthonormal bases will result. The overlaps of such baseg@- (™" resulting from
different coupling sets, are usually called Racah coefficients; from the perspective of this paper
Racah coefficients are special cases of invariant coefficients, in which the generalized Casimir
operators are chosen from different coupling schemes in the tensor product.

To illustrate how these results can be practically implemented, we have written
Mathematica programs, whose content is given in [5]. Using these programs, in section 4
we have shown how to decompose the eight-dimensional representation (2, 1{/(3)of
tensored with itself three times. The (5, 3, 1) representation has a multiplicity of 6, and we
exhibit the six eigenvectors that arise from different sets of commuting generalized Casimir
operators. Since the eight-dimensional representatidii(8f is tensored with itself three
times, there is also a permutation symmetry that can be used to label the multiplicity and
generate the six eigenvectors. The overlap between these different sets of eigenvectors is
givenin table 1, and includes Racah coefficients for different stepwise couplings.

As argued in the beginning of this conclusion the setup we have applied tG(¥e
groups can be applied to many different groups and subgroups. For example, the restriction
of U(N) irreps toSO(N) irreps is well known to have multiplicity, which has been dealt with
whenN = 3 by introducing generalized Casimir operators. The main difficulty in actually
implementing the program outlined here is in finding complete commuting sets of generalized
Casimir operators. We know of no general procedure by which such commuting sets can be
exhibited.
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Appendix
Let Rl.(JM), 1 < i,j < N, denote the infinitesimal operators 8f) corresponding to the
standard basig;;} of CV*", i.e.,
m _d o,
ROV = — RM(I+te)lizo i #

dt
and

d
Rl.(lM) = g RM (I +(t — Deii)|i=o.

Then an easy computation shows that

n
d
M) _ .
RV =37, T
y=1 vl

In the appendix of [2] it was shown that
(M)t _ p(M)
Rl.j = le.

WhereRi(JM)T denotes the adjoint of the operavqﬁju). This also means that

d
(M) M
R =< R™ (exp(ze;;)) o
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Let {h:} be an ONB ofv ™) then fori # j

eXFXl‘el'j) =1 +tejj =1 o _r
1

Now R™M(expite;;)) = exp(erj‘”)(actually sinceR;; is a nilpotent operator ol (M),

exp(tRl.(;”)) is a polynomial ian.(JM)). It follows that

(R<M> (explte;;))he |h,,> = (h; | R(M“(exp(zeij))h,,) = <hg | ex,g,<tRl_<]1_w>>T h,,>
= (e 1 exp(RY) hy) = (s | RO (expirejihy )
Similarly, it can be shown that
(RO expirei)he [1y) = (he | R (exptreis)hy

where
1 i
O
expre) =i—| ___
|
|
1

It follows from a well-known theorem (see, e.g., [9, corollary to theorem 2, section 14])
(RO (@)he | hy) = (e | RO (T, (A-2)

for all £ andn. And in general
(ROD@f 1) = (£ RODGS) VLS VO,

A concrete realization of the contragredient representatiq®t¥’, V")) as a submodule
of £(C™N) can be given as follows:

Let {f,} denote the normalized Gelfand—Cetlin basis ") (see [10] and [11,
chapter X]). If f € V™ thenf =Y cvfu, and f* = 3 ¢, fF. Thusf* € VM, and
it follows immediately that the mag — f*, f € V™ is aninvolutory conjugate-linear
(anti) automorphism of VM) and the Hilbert spac& ™ is identified with its dual under
this map. Define the representatifff”)” of GLy(C) on V™) as follows: forf € VM),
g€ GLN(C),gY = (g7HT, set



Invariant theory and generalized Casimir operators 8255

RO ()17 = (R (g ) = [(R“”)(g%) (Z cm)}*

=13 cuR“”)(gJ)fv] [Z C Z(RW)(gJ)fu | fu>fu:|
v v "

and (by equation (A.2))

= ZCV(R<M><g—1>fM|fV>f,L] =Y GRSl f) £ A

L,V W,V

SettingD,,.(g) = (R (g) f,. | f) we get

RM () f* =" CuDy (@ M i

7Y

ThusR™)* (g) f* belongs tov M) if f e v (M),
If ¢ € Cthen

ROV (@)(er™) = R (@)@ = [RMg@n] = [e(R™ ) r)]
= c[RM gV f] = R ()£
If f1, fo € V@) then
R () (ff + f3) = R () (fr+ 2" = [RY gy (f1+ ]
= [R() fu+ R (g¥) o] = (RM(g¥) )" + (RM(8¥) f2)
= R @ ff + R (0 f3.
Therefore R™)" (g) is a linear operator oif ™). Forgy, g» € GLy(C)
ROV (g2) (R (g2) ) = R ey (R (83) £)" = [R™ (&) (R (83 £)]
= [R (s &Y) 1] = [R¥(ag2¥) 7] = RO (gago) 17,

Therefore R™)" is a representation @ L y (C) on V™),
Let {h} be an ONB ofV ™) then since(h, | he) = 8¢, it follows that {h} is also an

ONB of V™), For everys, h: = ", Cs f, for someC; € C, thushf =3, Ct f*. Hence,
R(M)*(g)hg _ [R(M)(g‘/)hs]*
(by equation (A.3))

= > G
JTRY
If hy = Y, CJ fi thenk = 37, C1 f¥, and

(R<M>*(g)h§ |h;) = <Z C; DM (g™h fx
n,v

Z5Zf;>
A

~ M ~ M
= Y CIcE D) (g6 =Y ChCE DY) (67D
7N W,
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whereas,
(RO (g™0omy L he) = <R<M> (g™ (Z szu) >.C fx>
M A
= <Z cp (Z D (g‘l)fu> > ¢ f)\> =" clc; DY (g7,

L,V A
=Y Chcs D (g1 Zc”cf DI (g D).
TR

Thus
(RO (@ong  15) = (RO (g )y )
This means that i8 (resp B*) denotes the basi&:} (resp.{hg‘}), then

1], =[], = [(#00) ]

This shows that the representatiBf”)” on V(™) s indeed isomorphic to the contragredient
representation oR ™) on v M),

If (M) = (Mq,...,M,,0,...,0), let f,%? denote the highest weight vector of the
normalized Gelfand—Cetlin basis Bf™), then

FM(Z) = CmaxAY* ™2(2) ... AMN(2)
whereCnay is a positive scalar. Then clearﬁ](M ) fma) For
di1 0
d= .
0 dnn
then equation (A.2) implies that
RO =3 (ROD@™ 1| £38) £ = D0 (| ROV @D 188) 1

n

-M —M, (M M —M, M
= Z(fﬂ|d 1' 'dnn n(1a>2>f:—d11 1"'dnn %gx)'
"

For b’ belonging to the unipotent upper triangular subgroug afy (C) then

ROV @) fo0 = 37 (fu| RO S38) £ = foled
s
since (b)Y belongs to the unipotent lower triangular subgroupG y (C). It follows
that i) = £ is the lowest weight vector of R)", V(M) with lowest weight
(=M1, ...,—M,,0,...,0) (recall that the signature of the representatio®)v is
©,...,0,—M,,...,—Mj)). But according to [12], a concrete realization of an irreducible

G L (C)-module with signatur€, ..., 0, —M,,, ..., —M1) can be defined o™’ by setting
N

(R (@ f| @) = 1ze)  ¥fev® geGLy).
If & : VM s defined byd(f) = f*, then equation (A.3) shows that
R (@)= (R ) vfevon,
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Thus ® is an anti-automorphism intertwining™)Y and R™". It follows that under this
identification theG L  (C)-module contragredient {&® ™, v ) is indeec(R(M)J, V(M)).

It follows that ™ @ V™) can be defined as

Hm v’ L ey g (J0) =xm@a o ()

whereg is defined by equation (2.12) ahde B,.
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